Measure Theory with Ergodic Horizons Lecture 20

Prop. let
$$[X, \mu]$$
 be a measure spice and (f_n) , f μ -measurable. If $f_n \rightarrow_{U} f$ then $f_n \rightarrow_{\mu} f$.
Proof. Fix $d > 0$. We need to choose that $J_{\lambda}(f_{n}, f) = \mu (A_{\lambda}(f_{n}, f)) \rightarrow 0$.
By Cheby schevis inequality, $\mu(A_{\lambda}(f_{n}, f)) = \mu (X \in X: |f_n \setminus x) - f(x)| \ge d^2) \le d ||f_n - f||_1$
 $\rightarrow 0$ as $n \rightarrow \infty$.

Prop (almost Housedorticen). If for
$$r_{p}f$$
 and $f_{a} \rightarrow g$, then $f = g$ a.e.
Proof. let $\Delta(f,g) := g \times \in X : f \neq g$ and note that bixing any $d_{1} \geq 0$, we have
 $\Delta(f_{1}s) = \bigcup \Delta_{d_{1}}(f,g)$,
so it is enough to show that $\Delta_{d}(f_{1}s)$ is will for each $d \geq 0$. But
 $J_{d}(f_{1}s) \leq \int_{d/2} (f_{1},f_{u}) + J_{u}(f_{1},g) \rightarrow 0$ as $u \rightarrow \infty$.

Det. Call a sequence (In) Candy in measure if for each d >0, $\delta_{d}(f_{n}, f_{m}) \rightarrow 0$ is win $(n, m) \rightarrow \infty$.

Pcop_ (a) It fing then (fa) is Cauchy in measure. (6) If (fa) is Cauly in measure and admits a subsequence far - pt, Hen fr -> F.

HW.

We will show that the converse of pact (a) holds, so the conversation in necsare "unitormily" is complete.

We now show the for a.e.
$$x \in X$$
 ($f_u(x)$) is Cauchy (as a sequence of reals).
By Breel-Caudelli, we have left for a.e. $x \in X \exists N$ such that $x \notin B_N :=$
 $\bigcup \Delta_{q^{-n}}(f_u, f_{ne_1})$. But that for all $u \neq N$, and $m \geq n$, we have
 $\substack{n \geq N \\ n \geq N}$
 $|f_u(x) - f_u(x)| \leq \sum_{i=n}^{m-1} |f_i(x) - f_{ie_1}(x)| \leq \sum_{i=n}^{m-1} 2^{-i} \leq \sum_{i=n}^{\infty} 2^{i} \Rightarrow 0$ as $n \Rightarrow \infty$.

By the completeness of IR, there is a decidion
$$f: X \rightarrow IR$$
 s.t. $f_n(x) \rightarrow f(x)$
to a.e. $x \in X$. Here f is produce being the ptwise tinit of measurable
two dives. It remains to show the $f_n \rightarrow g_n f$. Let $d \neq 0$ and let N be
large examples that $d \neq 2^{-N}$. Then for all $n \neq N$,
 $\int_{d} [f_n, f] \leq \int_{2^{-n}} (f_n, f) \leq p(B_N) \leq \sum_{i=N}^{\infty} 2^{-i} \rightarrow 0$ as $N \rightarrow \infty$.

Almost uniform convergence.
It X be a set and
$$f_n, f: X \rightarrow \mathbb{R}$$
. Recall here say but (f_n) converges
uniformly to f_1 denoted $f_n \rightarrow uf_1$, if $\|f_n - f\|_u \rightarrow O$ as $u \rightarrow \infty$, where
 $\|g\|_u = \sup_{x \in X} |g(x)|.$

Equipores's theorem. We
$$[K_{1}\mu]$$
 be a finite measure space and for $f: X \rightarrow IR$ reasonable.
If fin \rightarrow f a.e. then have each $J = 0$, $f_{-1}|_{X}$, $\rightarrow u$ f $|_{X}$, for a measurable set
 $X' \leq X$ with $\mu(X \setminus X') \leq S$.
Proof. We have $N \neq Y \leq y \in S$ $\forall x \in X \rightarrow S = S = s, f$. $\forall n \neq N$ $|f_n - f| \leq S$.
We have $N \neq Y \leq y \in S \rightarrow S = s, f$. $\forall n \neq N$ $|f_n - f| \leq S$.
We supplies the quantifiers, for each $k \in N$, we get N_k
such $M \neq for all $x \in X \setminus X_k$ we have $V = N_k$ $|f_n - f| \leq S_k$. And X_k
is a set of measure $\leq \delta \cdot 2^{-(k+1)}$. Let $X' := \bigcup X_k$, so $\mu(X') \leq \sum_{k \in N} \mu(X_k) \leq \delta$.
Then $\forall k \in X \setminus X_k$ such $M \neq for all $x \in X \setminus X'$, we have $\forall n \neq N$, $|f_n(x) - f(x)| < S_k$.$$

Thus, $\forall x_k \exists N_k \|f_n\|_{X^1} - f\|_{X^1} \| \in \mathbb{E}_k$, so $f_n\|_{X^1} \rightarrow_{u} f\|_{X^1}$.

Product neasures let (X, X) and (Y, J) be measurable spaces. Recall NH I & J decokes the society generated by the "rectangles", i.e. sets of the form UXV, where UEI and VEJ.

Theorem. For any measure spaces
$$(X_1, X_2, \mu)$$
 and (Y_1, Y_2, ν) , here is a measure
 g on $(X \times Y_1, X \otimes Y)$ such $Mt \quad f(U \times V) = \mu(U) \cdot \nu(V)$ for each rectangle
 $U \times V_1$ i.e. $U \in X$ and $V \in J$. If μ and ν one σ -finite, this measure is
unique only we donote it by $\mu \times \nu$.
Ireact we donote it by $\mu \times \nu$.
Ireact $U = A$ be the algebra generated by the rectangles and note hA
and $such is A$ is a finite disjoint union of readingles becase $(U \times V)^c =$
 $U \times V^c \sqcup U^c \times V \sqcup U^c \times V^c$. To prove the theorem it's enough to show
that the formula $p(U \times V)^c = \mu(U) \cdot \nu(V)$ defines a premeasure on A
and a pply Corrected dong's theorem. As usual, we need to show the
 $g \in H$ is well-defined, i.e. $\coprod U := \bigcup U : V_1 = \sum_{i \leq u} p(U : v(i) = \sum_{a \in W} \mu(U) \cdot \nu(V)$.
 $p(\sqcup U_1^c \times V_2^c)$. We also used to show $Mt = p$ is orbit additive. Both of this
would follow if we prove that $U \times V = \bigsqcup U u \times v = \sum_{a \in W} 1 u \times v_a$ and
 $W = prove their using MCT twice. Note that $I_{W \times V} = \sum_{a \in W} 1 u \times v_a$ and$